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Each year, more teachers learn about the suc-
cessful intervention program known as Math 
Recovery (USMRC 2008; Wright 2003). The 

program uses Steffe’s whole-number schemes to 
model, understand, and support children’s devel-
opment of whole-number reasoning. Readers 
are probably less familiar with Steffe’s fraction 
schemes, which have proven similarly useful in 
supporting children’s development of fractional 
reasoning. The purpose of this article is to introduce 
some of these schemes. We provide examples of 
student work accompanied by discussions of how 
fraction schemes can be used as tools for insight 
into student reasoning. We hope that teachers will 
find the schemes useful in understanding their stu-
dents as mathematicians.

In their Fractions project, Steffe (2002) and 
Olive (1999) conducted teaching experiments with 
six pairs of students over a three-year period—from 
their third-grade year through their fifth-grade year. 
Steffe and Olive hypothesized that the students’ 
fractional schemes could be constructed through 
reorganizations of their whole-number schemes, 
which Steffe and colleagues identified in previous 
research (e.g., Steffe, Cobb, and Glasersfeld 1988). 
As a former student of Steffe, Bob Wright built on 
this research of students’ whole-number schemes 
by engaging teachers in teaching experiments with 
students in the early grades (2000; 2003). Wright’s 
increasingly popular Math Recovery program uses 
teaching experiments as interventions for strug-
gling students, during which teachers challenge 
students at the “cutting edge” of their knowledge 
and strategies (2000, p. 142). 

We have extended the work of Steffe, Olive, and 
Wright by engaging elementary school teachers in 
conducting their own teaching experiments with 
pairs of students. The teachers posed fraction tasks 
to the students and observed their problem-solving 
strategies in an effort to understand how students 
think. As part of the project, we administered pre-
tests and posttests to all of the students in the par-
ticipating teachers’ classrooms. The test tasks were 
similar to tasks the teachers posed in the teaching 
experiment. We use student work from the pretests 
to provide examples of responses that indicate the 
fraction schemes described here.

Operations and Schemes
Schemes are teacher constructs used to model stu-
dents’ cognitive structures. They consist of three 
components: a template for recognizing situations 
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in which the scheme applies, mental actions (opera-
tions) that are activated when such a situation is 
recognized, and expected results of operating (see 
fig. 1). Operations constitute the key component of 
a scheme because schemes are, in essence, ways of 
operating. For example, a student might be asked to 
add 8 plus 5, activating the mental action of count-
ing on from 8, which might be represented by the 
student saying, “8; 9 is one; 10 is two; 11 is three; 
12 is four; 13 is five; 13.” Teachers might attribute 
to this student a scheme for counting on. Situations 
perceived as involving addition, or joining objects, 
fit the recognition template and trigger the scheme. 
This activates the operations of iterating a unit of one 
and double counting, represented in the student’s 
verbalization, “9 is one, 10 is two … ” Finally, the 
student’s actions fit the expected result of the scheme 
by reaching the addend, “five.” A student might 
make a mistake in her counting sequence, reaching, 
for instance, “14 is five,” and her actions could still 
fit the expected result of reaching “five.” 

Schemes differ from strategies in several ways:

Schemes describe ways of operating that usually 
occur outside of the student’s awareness.
Schemes are activated at once, rather than in a 
procedural manner. 
Schemes are teacher constructs; teachers attri-
bute schemes to students in order to explain 
students’ actions (including verbalizations).

A scheme fits a teacher’s observations of a student 
in the same way that a scientific theory fits observa-
tions of natural phenomena. The teacher cannot say 
that the scheme actually exists within the student’s 
mind any more than Kepler could say that his laws 
of planetary motion existed within the planets. The 
teacher attributes the scheme to the student only 

because it is useful in explaining and predicting the 
student’s actions.

As mentioned before, operations are mental 
actions, abstracted from experience to become avail-
able for use in various situations. Rotation is an opera-
tion that you might have abstracted from experiences 
of turning your head, spinning your body, or twisting 
a screwdriver. People use such an operation whenever 
they recognize a common shape that is turned at an 
uncommon angle, as often occurs when studying 
geometry. (Young students often fail to recognize a 
square when it is not oriented as they expect; such 
students are not using a rotation operation.) Likewise, 
we can identify several key operations that students 
use to understand fractions (Olive 1999; Steffe 2002). 
We outline these in the next section.

Fraction operations
Here we describe several important fraction opera-
tions, which we summarize in Table 1:

Unitizing produces a unit, or whole, for a stu-
dent. Anything can be taken as a unit by estab-
lishing it as a separate entity, such as extracting 
foreground from background. Students may also 
unite a collection of objects into a whole, pro-
ducing a composite unit.
Partitioning a continuous unit (e.g., a candy bar), 
a continuous composite unit (e.g., three-fifths of 

Fractional Operations

Operation Description Example of using the operation

Unitizing Treating an object or collection of objects 
as a unit, or a whole 

Treating two trapezoids as one whole (as 
with pattern blocks)

Partitioning Separating the unit, or the whole, into 
equal parts

Equally sharing a pizza among four people

Disembedding
Imaginatively pulling out a fraction from 
the whole, while keeping the whole intact 

After the pizza has been sliced in fourths, 
imagining what three-fourths of the pizza 
would look like 

Iterating Repeating a part to produce identical 
copies of it

Using a one-fifth piece to identify a three-
fifths piece (as with fraction rods)

Table 1

Components of an operational scheme

Recognition Template Operations Expected Result

Figure 1
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a candy bar), or a discrete composite unit (e.g., 
a collection of twelve marbles) produces equal 
parts by marking separations within the unit. 

ne aspect of partitions that 
can confuse students is the idea 
that partitioning a unit into n 
parts requires only n – 1 marks, 
leading some students to claim 
they have produced fifths, for 
instance, instead of sixths. We 
have also observed students 
counting partitions, including 
the marks at either end of a 
partitioned whole, instead of 
pieces, which leads them to 
conclude they have produced 
sevenths, say, instead of sixths.

Disembedding occurs when a student imagines 
pulling out copies of some number of parts 
within the partitioned whole, while leaving the 
whole intact. So, a student might produce three-
fourths by partitioning the whole into four parts 
and disembedding three of those parts. “Disem-
bedding is the fundamental mental operation 
on which part-whole comparisons are based” 
(Steffe and Olive 1996, p. 118). We will discuss 

part-whole schemes and other critical fraction 
schemes in the next section.
Iterating involves repeating a part to produce 
identical copies of the original. These copies 
might be connected to form a new continuous 
fraction. For example, a student might imagine 
iterating one-fifth of a candy bar three times to 
produce three-fifths of that candy bar. In other 
cases, a student might iterate a discrete compos-
ite unit to form a new discrete collection, consti-
tuting some fraction of the original collection. 
In any case, students using iteration understand 
that iteration of the original part produces parts 
identical to the original in that any one of the 
parts can be used to substitute for any other.

Fraction schemes 
In this section, we describe several of Steffe’s 
fraction schemes, along with analyzed samples of 
student work. The samples also serve as examples 
of tasks teachers might pose to students to test for 
corresponding schemes and to better understand 
students’ reasoning with fractions. We intend for 
the analysis to serve as a guide for interpreting 
student responses to such tasks. We summarize the 
schemes, along with similar tasks, in table 2.

Fractional Schemes

Scheme Operations Example task

Simultaneous 
partitioning 
scheme

Unitizing the whole, partitioning the 
continuous whole using a composite 
unit as a template

Share this candy bar equally among you 
and two friends (also see fig. 2).

Part-whole 
scheme

Unitizing, partitioning, and then disem-
bedding a part from the partitioned whole

Show me two-thirds of the candy bar 
(also see fig. 3).

Equi-partitioning 
scheme

Unitizing, partitioning, and then men-
tally iterating any part to determine its 
identity with the other parts 

If you share this candy bar equally 
among you and two friends, draw what 
your piece would look like.

Partitive unit 
 fractional scheme

Given an unpartitioned whole and a unit 
fractional piece of it, iterating the frac-
tional piece to produce a continuous parti-
tioned whole and to determine the size of 
the unit fraction relative to the whole

If I give you this much [show a one-third 
piece and unpartitioned whole], what 
fraction of the candy bar would you 
have? (Also see fig. 4a and b.)

Partitive fractional 
scheme

Given an unpartitioned whole and a 
proper fractional piece of it, partitioning 
the piece to produce unit fractional 
pieces, iterating the unit fractional 
pieces to reproduce the proper fraction 
and the whole, coordinating unit 
fractions within the proper fraction 
and the whole (units coordinating at 
two levels) to determine the size of the 
proper fraction relative to the whole

If I give you this much [show an 
unpartitioned two-thirds piece and 
unpartitioned whole], what fraction of 
the candy bar would you have? 
(Also see fig. 5.)

Table 2

STUDENTS’ WAYS 
OF OPERATING ARE 

DEEPLY CONNECTED 
TO THEIR MEANING 

AND SENSE MAKING
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Partitioning schemes
Partitioning is the key operation of a simultaneous 
partitioning scheme, in which a student mentally 
projects a composite unit into a continuous whole, 
using the composite unit as a “partitioning tem-
plate” (Steffe 2003, p. 239) with the goal of pro-
ducing equal parts. For example, a student might 
produce five equal parts within a whole by imagin-
ing five equally spaced units within the whole. If a 
student further understands that the parts are identi-
cal, so that any one of them can be iterated enough 
times to reproduce the whole, the student is said to 
have an equi-partitioning scheme; understanding 
that the resulting pieces are identical to one another 
is implicit, but there is no explicit goal of reestab-
lishing the whole by iterating any of these pieces. 
Consider the response illustrated in figure 2.

The work of Student 1 indicates he used a parti-
tioning operation to successfully resolve his task. He 
apparently used this operation in a manner consis-
tent with either a simultaneous partitioning scheme 
(projecting a composite unit of six parts into the 
continuous whole) or an equi-partitioning scheme. 
It appears the student first made some marks on the 
top of the bar but was unsatisfied with them. The 
student then apparently erased the original marks 
and adjusted them accordingly. We might infer that 
this student iterated his initial guess to test whether 
it would equally partition the whole into six parts. 
Such a use of iterating indicates an equi-partitioning 
scheme, but we warn against trying to directly teach 
such ways of operating. Direct instruction might 
lead to students’ constructions of new procedures or 
strategies but not to meaningful ways of operating—
in this case, iterating a part to check whether it can 
be used to create six equal parts. Students must rec-
ognize the need to iterate, and teachers can facilitate 
such development by, instead, asking students ques-
tions: “How do you know that is 1/6? If six people 
were sharing this (candy) bar, would that be a fair 
share? Show me that it is fair.” 

Partitioning schemes provide students with a 
basis for developing their first fraction schemes, 
such as a part-whole scheme. In fact, the next two 
schemes we discuss can be considered reorganiza-
tions of partitioning schemes.

Part-whole scheme
Students attributed with a part-whole scheme con-
ceive of partitioned fractions as so many pieces in 
the partitioned fraction out of so many pieces in the 
partitioned whole. This scheme relies on operations 
of identifying (unitizing) a whole, partitioning the 

Student 1’s partitioning task

8. Shade in 1/6 of the bar.

Figure 2

Student 2’s part-whole task 

7. Shade in 3/5 of the bar.

Figure 3

whole into equal pieces, and disembedding some 
number of pieces from the partitioned whole. 
Although the pieces in the fraction and the whole 
are all the same size, they may not be identical, in 
the sense that students may not be able to substitute 
one piece for another. This is because part-whole 
schemes are based on reorganizing a partition-
ing scheme, such as a simultaneous partitioning 
scheme, but are not based on an equi-partitioning 
scheme. Consider the task illustrated in figure 3. 

Examining the work of Student 2, we infer that 
the student can relate fractional language to the 
task: He knew that the denominator indicated the 
number of pieces in the whole, and the numerator 
indicated the number of those pieces in the fraction. 
However, the pieces he produced are not equal, and 
so we wonder if he understands the importance of 
producing equal-sized pieces. As a result, we do not 
attribute a part-whole scheme to this student. Had 
the student produced equal-sized pieces, we might 
infer that he had used a part-whole scheme, 
but we might not infer that he knew the 
pieces were identical. For example, we 
have worked with students who could 
use part-whole reasoning to pro-
duce the appropriate picture; but 
many of these students could not 
identify one-fifth of the whole 
within that picture, implying 
that the students could produce 
equal partitions (perhaps using 
a simultaneous partitioning 
scheme), but they did not have 
an equi-partitioning scheme.
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Partitive unit  
fractional scheme
Students limited to a part-whole scheme rely on 
a partitioned whole and cannot identify the size 
of a given fractional part by iterating it within an 
unpartitioned whole. The transition to such treat-
ment of the composite whole yields a partitive unit 
fractional scheme (Steffe 2003, p. 242). Most of 
the students we have worked with in grades 5 and 
6 have developed part-whole schemes but have not 
developed partitive unit fractional schemes. Data 
from the 2003 National Assessment of Educational 
Progress supports a generalization of this conclu-
sion (Kastberg and Norton 2007). We attribute this, 
in part, to an almost singular focus on part-whole 
tasks in fractions curricula.

The partitive unit fractional scheme is based on a 
reorganization of an equi-partitioning scheme (par-
titioning that produces identical parts). In utilizing 
a partitive unit fractional scheme, a student under-
stands that any unit fractional part can be iterated 
so many times to reproduce the whole and that this 
number of iterations determines the size of the frac-
tion relative to the whole. Furthermore, the partitive 

unit fractional scheme “establishes a one-to-many 
relation between the part and the partitioned whole” 
and involves “explicit use of fractional language to 
refer to that relation” (Steffe 2002, p. 292). In addi-
tion to introducing fractional language, reorganizing 
an equi-partitioning scheme into a partitive unit frac-
tional scheme introduces a new goal. As a partition-
ing scheme, the primary goal for an equi-partitioning 
scheme was to produce equal (and identical) parts; 
as a fractions scheme, the primary goal for a partitive 
unit fractional scheme is to determine fractional size 
relative to the whole, through iteration. 

Both a part-whole scheme and a partitive unit 
fractional scheme generate fractional language, but 
the difference between the powers of the schemes 
is evident in resolving the task illustrated in figures 
4a and 4b. Students with only a part-whole scheme 
cannot determine the fraction, because the whole 
is unpartitioned. Students with a partitive unit frac-
tional scheme can determine the unit fraction by 
iterating it to reproduce the whole and naming the 
fraction as the reciprocal of the number of itera-
tions. On the other hand, a partitive unit fractional 
scheme cannot be used to determine the fractional 
size of a nonunit fraction, because the iterations 
will not reproduce the whole (unless, of course, the 
fraction in question simplifies to a unit fraction; e.g., 
two-sixths).

The work of Student 3 (see fig. 4a) indicates that 
he used an iterating operation in a way that fits our 
model of the partitive unit fractional scheme. This 
student drew a line to indicate where the smaller bar 
coincided with the whole bar, and then produced 
identical pieces until he reproduced the whole. The 
student further understood how to relate this iterat-
ing process to fractional language: He knew that 
because he used the piece four times to reproduce 
the whole, the piece was one-fourth of that whole. 
We can reasonably attribute a partitive unit frac-
tional scheme to Student 3. We may wonder if his 
understanding generalizes to nonunit fractions. 

Student 4 left fewer residual markings for us 
to analyze (see fig. 4b). It seems her first step was 
similar to that of Student 3: She marked where 
the small piece coincided with the whole piece. 
However, her work does not clearly indicate how 
she went on to use this mark to arrive at the cor-
rect answer. We are left wondering whether the 
student used an iterating operation. One alternate 
hypothesis a teacher may propose is that Student 4 
repeatedly partitioned the whole into various pieces 
(halves, thirds, fourths, etc.) until she arrived at a 
partitioning that coincided with the mark she made. 

Partitive unit fractional tasks

(a) Student 3’s work fits our model.

7. If the longer bar is a whole bar, what fraction is the shorter bar?

Figure 4

(b) Observing Student 4’s actions would give us more insight than a paper 
“snapshot” does.

7. If the longer bar is a whole bar, what fraction is the shorter bar?
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This conjecture may seem far-fetched, because few 
teachers would solve the problem using this tedious 
approach, but we have witnessed students using this 
more basic partitioning strategy to do just that. 

Student 4 did not draw the marks we would 
expect to support the hypothesis described above. 
It seems more reasonable that she performed some 
sort of iterating operation with a physical motion 
instead of her pencil, such as by moving her finger 
along the whole bar, repeating the size of that first 
piece, until she realized that four of those pieces 
would constitute the whole. Because this conjecture 
seems more likely, given the single mark she left, 
we conclude that she used a partitive unit fractional 
scheme. This is an example in which her teacher 
would probably want to give this student a similar 
task and observe the student solving it. Seeing the 
student’s actions would yield insight that we lack 
from this paper “snapshot.”

Partitive fractional scheme 
The partitive fractional scheme is a generalization 
of the partitive unit fractional scheme. Students can 
use the more general scheme to conceive of a proper 
fraction, such as three-fifths, as three of one-fifth of 
the whole. This involves producing composite frac-
tions from unit fractions through iteration, while 
maintaining the relation between the unit fraction 
and the whole. It also involves units coordination 
at two levels, because the student must coordinate 
three-fifths as three iterations of the fractional unit 
and the whole as five iterations of the fractional 
unit. In other words, three-fifths is a unit of three 
fractional units, and the whole is a unit of five frac-
tional units. Consider the coordination indicated by 
the student response in figure 5.

If we were only interested in correctness, then 
we could quickly assess the response of Student 5 
as incorrect and move on. However, we are more 
interested in how students reason. Her answer is 
not far from the correct one, and the few marks 
she made warrant further consideration. It is not 
clear how she decided that the shorter bar should 
be partitioned into three pieces, but we can see that 
these three pieces are reasonably equivalent in size. 
More interestingly, Student 5 seemed to know that 
three pieces in the shorter bar are actually fourths 
of the whole bar. She was reasonably successful 
in simultaneously dealing with thirds and fourths, 
concluding that the shorter piece is three-fourths of 
the whole bar. This indicates she was coordinating 
units of units. Although three-fourths is not correct, 
the work of Student 5 indicates she was operating 

in a way consistent with our understanding of the 
partitive fractional scheme.

Using Schemes
We have introduced some of Steffe’s fraction 
schemes in hopes that teachers will find them useful 
in assessing and understanding their students’ ways 
of operating with fractions. But we have warned 
against trying to teach these schemes directly. 
Students’ ways of operating are deeply connected 
to their meaning and sense making, and attempts 
to circumvent or replace those ways of operating 
can only yield disconnected knowledge. Rather, 
teachers should find ways to work within their 
students’ operating methods while generating a 
need to develop more power-
ful ways of operating. For 
example, tasks such as the one 
illustrated in figure 4 can be 
presented with manipulatives, 
such as Cuisenaire rods. 

Students with partitive unit 
fractional schemes should 
be able to estimate the size 
of the smaller rod relative to 
the longer (whole) rod. This 
ability to estimate might gen-
eralize to nonunit fractions 
and contribute to proportional 
reasoning (Nabors 2003). Stu-
dents limited to a part-whole 
understanding of fractions 
might also engage in such 
tasks by using the smaller rod to segment the larger 
rod (i.e., place copies of the smaller rod side by side 
until they equal the length of the larger rod). With 

Student 5’s partitive fractional task

9. If the longer bar is a whole bar, what fraction is the shorter bar?

Figure 5

SCHEMES—WHICH 
USUALLY OCCUR OUTSIDE 
OF THE STUDENT’S 
AWARENESS—ARE 
TEACHER CONSTRUCTS, 
ATTRIBUTED TO 
STUDENTS TO EXPLAIN 
THEIR ACTIONS



54 Teaching Children Mathematics / August 2008

the larger rod partitioned by the smaller rods, these 
students can use their part-whole schemes to deter-
mine the fraction. Segmenting can be a pathway 
to developing the iterative operation of an equi-
partitioning scheme and a partitive unit fractional 
scheme. The key is for students to have opportuni-
ties to carry out such experimental actions, generat-
ing new ways of operating from their existing ways 
of operating. 

Thanks to the teachers, students, and administra-
tors at Templeton Elementary School for their work 
with us. We especially appreciate the dedication 
of teachers like Valerie Gliessman, Myra Hogan, 
Regina Tippmann, and Marilyn Gingerich.
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